我认为数据可视化并不是简单的把数据变成图表。而是以数据为视角,看待世界。换句话说,数据可视化的客体是数据,但我们想要的其实是——数据视觉,以数据为工具,以可视化为手段,目的是描述真实,探索世界。
坚信——图表比数据表更有表现力。
数据可视化是为了更好地促进行动,所以要让行动的决策人看懂!
每一种图表类型的诞生,都是由于明确而迫切的需要;
所以当你需要在已知的图表类型中进行选择时,先想想自己想要解决的到底是什么问题!
我愿以自身能力所及,尽力展示数据;
我发誓,数据表达的真相,我绝不扭曲;
即使是超大的数据集,我也将令其干净、连续;
永远保持热情,对不同的字段进行比较;
从宏观到微观,用不同的细节揭示数据背后的秘密;
每做一个图集,都有一个清晰的目标:或描述、或探索;
我的技术永远为揭示数据真相而服务,而不是利用数据炫耀自己的技巧。
大数据可视化,就是指将结构或非结构数据转换成适当的可视化图表,然后将隐藏在数据中的信息直接展现于人们面前。那数据可视化的优势在于合成呢?
1. 展示需要相比传统的用表格或文档展现数据的方式,可视化能将数据以更加直观的方式展现出来,使数据更加客观、更具说服力。在各类报表和说明性文件中,用直观的图表展现数据,显得简洁、可靠。
在可视化图表工具的表现形式方面,图表类型表现的更加多样化,丰富化。除了传统的饼图、柱状图、折线图等常见图形,还有气泡图、面积图、省份地图、词云、瀑布图、漏斗图等酷炫图表,甚至还有GIS地图。这些种类繁多的图形能满足不同的展示和分析需求。
指标卡:直观展示具体数据和同环比情况;
计量图:直观显示数据完成的进度;
折线图:看数据的变动走势;
柱状图:直观展示对应的数据、可以对比多维度的数值;
(堆积柱状图)
条形图:可以理解成横向的柱状图;
双轴图:柱状图+折线图,这种图表大家都很经常用到;
饼图/环图:分析数据所占比例;
行政地图:有省份或者城市数据即可;
GIS地图:更精准的经纬度地图,需要有经纬度数据,可以精确到乡镇等小粒度的区域,参考链接:经纬度可视化地图
漏斗图:路径、数据转化情况;
词云:即标签云,展示词频分布;
矩形树图:分析不同维度数据的占比分布情
2. 数据分析需要大数据的价值在于挖掘。大数据时代背景下的可视化图表工具在大数据时代,可视化图表工具不可能“单独作战”。一般数据可视化都是和数据分析功能组合,数据分析又需要数据接入整合、数据处理、ETL等数据功能,发展成为一站式的大数据分析平台。
3、科技在进步,社会在发展,数据可视化也要适应时代的需求,除了要在数据处理和数据展示方面下足功夫外,还要强调功能易用性和操作人性化,不要有太高的学习门槛,除了技术人员,让更多的业务人员能够了解数据平台,了解数据可视化。
4、数据可视化的应用价值,其多样性和表现力吸引了许多从业者,而其创作过程中的每一环节都有强大的专业背景支持。无论是动态还是静态的可视化图形,都为我们搭建了新的桥梁,让我们能洞察世界的究竟、发现形形色色的关系,感受每时每刻围绕在我们身边的信息变化,还能让我们理解其他形式下不易发掘的事物。
有的可视化目标是为了观测、跟踪数据,所以就要强调实时性、变化、运算能力,可能就会生成一份不停变化、可读性强的图表。
有的为了分析数据,所以要强调数据的呈现度、可能会生成一份可以检索、交互式的图表
有的为了发现数据之间的潜在关联,可能会生成分布式的多维的图表。
有的为了帮助普通用户或商业用户快速理解数据的含义或变化,会利用漂亮的颜色、动画创建生动、明了,具有吸引力的图表。
还有的被用于教育、宣传或政治,被制作成海报、课件,出现在街头、广告手持、杂志和集会上。这类可视化拥有强大的说服力,使用强烈的对比、置换等手段,可以创造出极具冲击力自指人心的图像。在国外许多媒体会根据新闻主题或数据,雇用设计师来创建可视化图表对新闻主题进行辅助。
所以数据可视化是什么,这个概念不是那么简单的一个定义,希望我们都能好好把握数据可视化,把握数据时代,真正让数据驱动业务,驱动发展。